
Journal of Statistical Physics, Vol. 22, No. 4, 1980 

Open Quasi-Free Systems 
Alberto Frigerio, 1'2 Vittorio Gorini, 8 and Joe  V. Pul~ 4 

Received July 24, 1979 

We compute the time evolution of an infinitely extended, open, quasi-free 
system in the weak coupling limit followed by the thermodynamic limit, and 
we derive the Onsager relations and the properties of entropy production. 
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1. I N T R O D U C T I O N  

The aim of this work is the rigorous study of some microscopic models for 
the irreversible time evolution and the thermodynamic behavior of  a large, 
open quantum system. Spohn and Lebowitz (1~ have studied finite systems 
weakly coupled to several thermal reservoirs at different temperatures, and 
derived the Onsager relations for the heat flows, the positivity and convexity 
of the entropy production, and the principle of  minimal entropy production 
in the regime of linear thermodynamics. For  infinite systems, a similar study 
would be extremely difficult in general. Therefore, as usual, we turn for some 
insight to the quasi-free case. We consider first a spatially confined, quasi-free 
system and adapt  Davies'  techniques ~2,3~ to study its evolution in the limit of 
weak coupling to several reservoirs. Then we take the thermodynamic limit in 
the case in which the reduced evolution is translationally invariant. To obtain 
this, we are compelled to use couplings which are themselves translationally 
invariant, so that the system is in contact with all the reservoirs at each point in 
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space in the same way. The time evolution of local observables and the 
stationary states are computed explicitly. We also discuss a model in which 
the coupling is not translationally invariant and the points of contact between 
system and reservoirs move to infinity in the thermodynamic limit. Then, in 
order to see the effect of the reservoirs on the evolution of the local observ- 
ables, one must scale the time proportionally to the size of the system. 

For  a class of quasi-free states determined by functions of the one-particle 
Hamiltonian, we are able to compute explicitly the relevant thermodynamic 
quantities (heat and matter flows, entropy production) and their densities in 
the thermodynamic limit, and find that all results obtained by Spohn and 
Lebowitz in the linear approximation are also valid here. Moreover, as already 
remarked, we find the exact expression of the stationary nonequilibrium state, 
which is determined by the initial states of the reservoirs and by the relative 
strengths of the couplings. It is not a thermal state corresponding to some 
intermediate temperature. Irreversible time evolutions leading to temperature 
equalization have been obtained by Fannes and Rocca. (4~ However, they are 
not derived from an underlying Hamiltonian evolution. We also remark that 
in the treatment of Ref. 4 both systems in contact are infinitely extended at the 
beginning, and therefore have "comparable macroscopic sizes." Instead, in 
our approach, the "smallness" of the open macroscopic system as compared 
to the size of the reservoirs is ensured by taking the thermodynamic limit after 
the limit of weak coupling has been performed on the finite system. (5,6~ 

In the boson case, it should be possible, in principle, to include condensa- 
tion in the initial state of the system or of the reservoirs. However, due to the 
technical difficulties, we do not have complete proofs for this situation. If  a 
system is coupled to a reservoir in a condensed (i.e., nonprimary) state, its 
reduced dynamics cannot be expected to become Markovian, even in the weak 
coupling limit. When the initial state of the system shows condensation, and 
the initial states of the reservoirs do not, the density of the condensate should 
at most decrease in time. However, in the most obvious model that one can 
think' of (an ideal Bose gas coupled to ideal Bose gases) there is no effective 
coupling at zero energy: hence the density of the condensate remains constant, 
and there is no phase transition induced by the dynamics (in contrast to the 
models of Hepp and Lieb (7) and of Martin(5'6)). 

The structure of the paper is as follows. In Sections 2-5 we deal with 
boson systems and translationally invariant couplings. Section 2 is a summary 
of some properties of the completely positive, quasi-free maps on the CCR 
algebra. Section 3 is an extension of Davies' techniques to deal with the weak 
coupling limit in the presence of several reservoirs at different temperatures. 
In Section 4 we study the thermodynamic limi t, and give some arguments 
concerning the possible evolution of the condensed phase. In Section 5 we 
derive the Onsager relations for the heat and matter flows and the properties of 
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entropy production. Finally, in Section 6 we sketch how the preceding results 
can be obtained also in the fermion case, and we discuss a lattice system for 
which the coupling to the reservoirs is not translationally invariant. 

2. PRELIMINARIES 

We give here a brief summary, without proofs, of those parts of the 
theory of quasi-free, completely positive maps on the CCR algebra that are 
relevant to this workJ 8-1a~ Let Jr be a complex Hilbert space. A representa- 
tion of the canonical commutation relations (CCR) over x(~ is a map h -+ 
W(h) of ~ into the unitary operators on a Hilbert space Jf~w satisfying 

W(h)W(h') = W(h + h') exp[�89 h')] (2.1) 

for all h, h' in o~. By Slawny's theorem, all representations of the CCR over 
a given Hilbert space ~ generate isomorphic C*-algebras. So we can speak 
of the CCR algebra over J~, and denote it by W(~,~). A state on W(~gf) is 
completely determined by its values on the Weyl operators W(h), h ~ ~ .  A 
state oJ is called continuous if the map h -+ ~o(W(h)) is continuous. If  B is a 
positive bounded operator on ~ ,  let o~ be the (continuous) state defined by 

oJB(W(h)) = exp[-�88 [1 + 2B]h)] (2.2) 

This class of states is a subclass of the quasi-free states. If  U is a unitary 
operator on o~, the map ~r: on W ( ~ )  defined by 

~:(W(h)) = W(Uh) (2.3) 

is a *-automorphism of W(~) .  Corresponding to each state o~B and each 
contraction T on ~ there is a completely positive, identity-preserving map 
~B.r on W(h) satisfying ("'9~ 

cbB,~,(W(h)) = W(Th)mB(W[(1 - T*T)Z/~h]) (2.4) 

In particular, when T is a projection, (2.4) is a conditional expectation. If  
{Tt; t /> 0} is a contraction semigroup commuting with B, then {q~8,:~; t >1 0} 
is a semigroup, ~oB is a stationary state for it, and l im~o(~B,r~(W(h))  ) = 
we(W(h)) for all h in ~ and for all continuous states oJ on W(~;4 ~) if and only 
if Tt converges strongly to zero as t --+ oo. (8,z~ In the cases we shall be con- 
sidering, Tt will be of the form exp(Kt), where K is a bounded operator and 
G = - K  - K* /> 0. In this case, (2.4) can be rewritten as 

q~mr~(W(h)) --- W(Tth) exp - � 8 8  ds (T,h, (1 + 2B)GT~h) (2.5) 
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More generally, if C is a bounded operator satisfying G ~< C ~< ~G for some 
positive ~, then {qbt; t /> O} with 

[fl  1 q)t(W(h)) = W(Tth) exp - � 88  ds (Tsh, CTsh) (2.6) 

is a completely positive semigroup a~ of which (2.5) is a special case, with 
C = (1 + 2B)G. If  Bj, j = 1 ..... r, are positive bounded operators, Kj are 
bounded operators with Gj = - K j  - Kj* >i 0, T / =  exp(Kjt), [Bj,/(3.] = 0  
for all j, then qst defined by (2.6) with Tt = exp(~-=lKjt) and C = ~=~  
(1 + 2Bj)Gj satisfies 

d t=0 ~ d  t=0 dt a'(@t(W(h))) = c~ (2.7) 
]=1 

for all h in ~ and for all continuous states o~ on W(Jf) .  

3. W E A K  C O U P L I N G  L I M I T  

Here we study the reduced dynamics of a spatially confined boson system 
S coupled to several boson reservoirs Rj at different temperatures in the inter- 
action picture and in the limit of weak coupling. The "case of one reservoir 
has been treated by Davies in Ref. 2. We use Davies' technique (a) on the test 
function space. Let ~ = ~o @ ~ @ ""@ ~ be a (separable) Hilbert 
space, and denote by Pj the projection of ~ onto ~ ,  j = 0, 1 .... , r. Let 
Hi, j = 0, 1 ..... r, be self-adjoint operators in ~j ,  Vj bounded operators 
from ~o into ~j ,  j = 1 ..... r, and V = ~ = 1 Vj. For  all h ~ [0, ho) define 

U~ ~ = exp(iZAt), Z~ = Ho + HI + . . .  + HT + A(V + V*) 
(3.1) 

The system S is described by the algebra of observables W(~ff0) with free 
evolution determined by the one-particle Hamiltonian H0 according to 
W(h) -+ W(exp(iHot) h). The algebra of observables of the j th  reservoir is 
W(~et~j) with free evolution given by W(h) -+ W(exp(iHjt) h) and the coupled 
dynamics of the system plus reservoirs is given by W(h) --~ W(Ut~h), h ~ ~ .  
Since S is spatially confined, we assume: 

(A) H0 has a pure point spectrum. 

We also need the following technical condition: 

~0 ~176 
(B) dt 11 V* Ut ~ V]] exists. 
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In order to recover for the reduced dynamics of S the ordinary interaction 
picture, we have to study the limit as A -+ 0 of XtZh, h ~ ~ o ,  where 

Xt ~ = Po Ut)a 2 U ~ t/a ~ (3.2) 
instead of the limit of Ytah, 

Y? = U ~ U ~  
as in Ref. 3. 

I .emma 3.1 (compare Ref. 3). Assuming that conditions (A) and (B) 
hold, let 

K = - dt e -~%~EkV*gf lEk  (3.3) 

where the E~ are the spectral projections of Ho corresponding to distinct 
eigenvalues %, and let Tt be the contraction semigroup on ~o with generator 
K. Then 

lim II X ? h  - Z~h li = 0 (3.4) 
h--*0 

for all h in ~o, uniformly on bounded intervals in t. 

ProoL In Ref. 3 it is shown that lima~oll Ytah - Tth[I = 0. Since Xt ~ = 

U~a2 YtaU~ and Tt commutes with U~a~, we have 

llX?h- TthlI = II YtaU~ ~h - U~ 

= l [ ( r ?  - Yoe%~hll 
Then, by Davies' result, (3.4) holds for those h that are eigenvectors of Ho. By 
condition (A), the finite linear combinations of such eigenvectors are dense in 
~o. Then (3.4) holds for all h in 9fro, since UX~ a - Ttn ~< 2 for all t and for 
all A. 

Remark .  Note that K has the form K = ~ =  ~K t, where Kj is given by 
(3.3) replacing V by V t. We shall use the notation G1 for -/s - K*. 

Coro l l a ry  3.2. Let {h~) be a complete orthonormal set (c.o.n.s.) in ~0, 
letfj~ be vectors in ~ .  such that 

(fro, Ut~ = $zj3mngj(t) ~ L I ( ~ )  (3.5) 
and let 

Then, each 
Lemma (3.1) yields 

 [fo ] K = Kj  = - dt g j ( t )  exp( -  iHot) 
i=1  j = l  

independently of the particular c.o.n.s, chosen. 

Vj = ~ f j , @ ~ , ;  j =  1 .... , r  (3.6) 
n 

Vj is bounded [11VjI[ 2 = gi(0)], condition (B) is satisfied, and 

(3.7) 
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We now specify the reference states of the reservoirs to be quasi-free 
states oJB~ on W ( ~ ) ,  j = 1 ..... r, where the following holds: 

(C) Bj = bj(Hj), the bj being positive, continuous functions vanishing 
at infinity. 

For instance, if the spectrum of each Hj is [0, m), the functions bj can be 
taken to be of the form 

bj(E) ={exp[/3(~-- /zj)]--  1} -1 f o r ,  i> 0 (flj > 0,/~j < 0) (3.8) 

and suitably continued to the negative half-axis. Then, the reduced dynamics 
on W(~f0), in the interaction picture, is given by 

B I ~ . . . e B , . P o ~ , ~ ~  

~ o 2Bj]PjU#~,~U_t/a2h) (3.9) = W(Xt~'h) exp --~j= (PjU#7, U_w,~h, [1 + a o 

We show that this tends to a dynamical semigroup of the form (2.6) in the 
weak coupling limit. 

T h e o r e m  3.3. Under assumptions (A)-(C), for all continuous states o~ 
on W(~o) and for all h in Y~o, 

lim ~(cb~le...e~.poaV~a~o_,~2[W(h )]) 
A ~ O  

= ,.o(W(Tth))exp - ~  ds (T~h, [1 + 2bj(Ho)]GjTsh) 
j = l  

(3.10) 

uniformly on bounded intervals in t. 

ProoL For all continuous states w on W(~ef0) and for all h in 3(40 

lim oJ(W(Xtah)) = o~( W( Tth ) ) 
~"* 0 

uniformly on bounded intervals in t, by Lemma 3.1. To complete the proof, 
we show that 

lim (PjU~/~2U~ [1 + 2Bs]PjU~/A2U~ 
A---, 0 

f2 = d s  (rsh, [1 + 2bj(go)lajrsh) (3.11) 

uniformly on bounded intervals in t, for all h in ~o  and for a l l j  = 1 .... , r. 
Since all the relevant operators are bounded uniformly in A and uniformly on 
bounded intervals in t, it suffices to prove (3.11) when h is a finite linear 
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combination of eigenvectors of Ho. Let ek, ez be eigenvectors of Ho corre- 
sponding to the eigenvalues Eg, ez, respectively. We must prove that the 
expression 

ea(% -'')/a~(Py Ut~a2e~, [1 + 2Bs]Ps Ut~a~e,) (3.12) 

tends, as A -+ 0, uniformly on bounded intervals in t, to the expression 

3~,~,[1 + 2bs(~t)] ds (T~ee, G,T~et) (3.13) 

First of all we show that the difference between (3.12) and the expression 

e~t(%- ',)/~[1 + 2bs(%)~l~bs(,~)~l~](P~ U ~ tf~,~ Ut~e~, Ps U~ tl~ ~ Ut~e~) 
(3.12') 

vanishes as A --+ 0, uniformly in t. Indeed, 

By2P,  = by(H,)l/2Py = b,(Zo)i/2P, = Pjb,(Zo) 1/z 

and 

l[[bj(Zo) ~'2, U~=]]I ~< 2Hbs(Zo) ~/2 - bj(Za)~/=[[--->0 as A-+0  

since bj(Za) ~/2 commutes with U~2 and ZA tends to Z0 in the norm resolvent 
sense (use, e.g., Theorem IV.3.11 of Ref. 14 and Theorem VIII.20 of Ref. 15). 
Finally, bj(Zo)~I2e~ = bj(E~)l/2ek and U~ is a unitary operator commuting 
with Pj. Using 

I A  f tlA2 fro 2rr~ 1 + ds U % ( V  + V*)U~ ~ 
~ J - t l h  V t l h  2 = " ,JO 

recalling that Pj (V  + V*) = PsVs = PiVsVo, and performing some change 
of variables in the integration, we find that the scalar product in (3.12') is given 
by 

fot f(t-s)/~2 [(Uis,a )+~,ek, Vj*U~~ dS o du ~ 

+ (Vj*v~~ v~2,,~e,)] 

= ~o dSjo du [(Y2+a%ek, U_(sla2)_~Vs g .  VsU<~la2g, ae~) 

+ (U ~ (~/a ~) - .  Vs* U~ ~ Vs U~a~ Y~aek, Y{+ a%e3] 

Now define functions F~it(s, u) by 

U_ (s/a ) - u Vs Uu Vs UIslA ~ Ysael) r e~s(% _ ~) l ; t2(  ysa+ h % e s c ,  o 2 . o o 

F*i'(s, u) = ~ for u <  ( t -  s)/h 2 
! 

LO ior u > ( t -  s)lA 2 
0.14) 
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Then, (3.12') can be written as 

f fo ds du ei(t-s)(%-~)Jx~[1 + 2bj(%)lZ2bs(e31/2][F~it(s, u) + F~t(s, u)] 

Since Y~§ x% and Ys ~ tend strongly to Ts as Z--~ 0, (3) and all the operators 
involved in (3.14) are bounded by 1, uniformly in A, t, s, and u, the limit as 
A -+ 0 of F~tt(s, u) is 

F~z(s,u) = (T, ek, U~176 for a l l s ~ [ 0 ,  t), u~ [0 ,  oo) 

Now, recalling the explicit expression of Kj, we see that (3.13) is the limit as 
A-+O of 

f Yo ds du e~(t-s)(%-~)/a~[1 + 2by(e~)l/2bj(Ez)l/2][F~z(s, u) + fizz(s, u)] 

(3.1Y) 

[when ~ ~ ~ the limit as 1 ~ 0 of (3.13') can be shown to vanish by an 
integration by parts]. Thus 

limI(3.12 ) - (3.13)] 
A ~ 0  

= Iim1(3.12') - (3.13')[ 
A ~ O  

f fo ~< lim [1 + 2bj(ek)~/2bj(ez) ~12] ds du 
~t--* O 

x {IF~.~(~, ~) - F~(~, u)l + IF~'~(s, u) - F~(~, u)l} 
(3.15) 

The integrand in (3.15) is bounded by the integrable function 411 vj* uOEII  ; 
hence, by the dominated convergence theorem, the limit (3.15) is zero. 
Uniformness of convergence on bounded intervals in t clearly holds. This 
proves the theorem. 

Comment. It is clear from the discussion at the end of Section 2 that, 
loosely speaking, the dynamical semigroup obtained in the weak coupling 
limit has a generator which is the sum of the generators for the dynamics that 
would have been obtained by coupling the system to the j th  reservoir alone, 
j = 1,..., r (for a precise discussion of the meaning of "genera tor"  of a 
quasi-free dynamical semigroup on the CCR algebra see Ref. 12). 

A stationary state for this dynamical semigroup is 

coB~ = lim ~o o o ~t 
t ~ o o  

where 

Io 2 B~ = dt r~* ajbj(Ho)r~ (3.16) 
] = 1  
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With a coupling described as in Corollary 3.2, Boo is given simply by 

Boo = b ( H o )  - B 

b(~) = ~j(~) ~j(~)bj(~) 
./=1 

where 

(3.17) 

F s162 = d t  e - * a g j ( t )  
oo 

(3.18) 

is a nonnegative continuous function vanishing at infinity, for al l j  = 1 .... , r, 
and Ot is of the type Omr ,. When the functions bj describe thermal states, cos 
is not a thermal state at some intermediate temperature and chemical potential; 
rather, its two-point functions are a sort of weighted average of the two-point 
functions of the thermal states corresponding to thermal equilibrium with 
each reservoir separately. 

4. T H E R M O D Y N A M I C  L IM IT  

Let { ~ }  be a directed net of Hilbert spaces, indexed by an 'increasing 
family {A} of bounded regions of space (Rv or yv) whose union is the whole 
space, and let W be the completion of U* ~ -  The algebra of observables for 
the system confined in the region A is W ( ~ ) .  Notice that the norm closure 
of I,.), W(W,) is properly contained in W(~r Concerning the dynamics, we 
shall make the following assumption: 

(D) For all A there is a self-adjoint operator HA in ~ with pure point 
spectrum, and there exists a dense domain .~ in W such that (i) each 
h ~ ~ is in the domain of H ,  for large enough A; (ii) for all h E -~, 
l imA/~H,h = H h  exists; (iii) H is essentially self-adjoint on -@. 

For all A it is possible to derive a dynamical semigroup Or* of W(J(FA) by 
coupling the system to suitable reservoirs with an interaction A(V. + V**) 
and taking the weak coupling limit, as in Theorem 3.3. In general, qbt* will 
depend on A both through V. and HA, and this can in principle give rise to a 
complicated structure, for which the limit A ,7 0o cannot be easily taken. So 
we make a simplifying assumption on V.: 

(E) VA = ~=~ Vj*, where r is independent of j,  Vj* is of the form 
(3.6), and the functions g/t) of (3.5) are independent of A. 
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Under assumption (E), the semigroup qsta of Theorem 3.3 is of the form 

(I)t a -.~ I~B A ,T tA  

where 
(4.1) 

(4.2) 

(4.3) 

BA = b(Ha) [b defined by Eq. (3.17)] 

Tt a = exp(Kat), Ka = - dt gj(t)  e x p ( -  iHat)  
.= 

Then we have the following result. 

Theorem 4.1. Let Ba = b(Ha) and Tt A = exp[k(Ha)t] ,  where b(.) and 
k(.) are continuous bounded functions, independent of A, with b /> 0 
- k  - /~ 1> 0. Assume that (D) holds and let 

B = b(H) ,  Tt = exp[k (H) t l  (4.4) 

Then 
lim co(qb~A.r,A (W(h))) = oJ(cbB,r, (W(h)))  (4.5) 

ASm 

uniformly on bounded intervals in t, for all h in ~.Ja ~ a  and for all states that 
can be extended to continuous states on W(J{). 

Proof. It is clear from formula (2.4) that it suffices to prove that Tt a 
converges strongly to Tt and that [1 - (Tta)*Tta]Ba converges weakly to 
(1 - Tt*TOB, uniformly on bounded intervals in t. By assumption (D) and 
Corollary VIII. 1.6 of Ref. 14, HA converges to H in the strong resolvent sense. 
Hence, by Theorem VIII.20 of Ref. 15, Ba converges strongly to B and 
[ 1 -  k(Ha)] -1 converges strongly to [ 1 -  k(H)] -1. Thus, by Theorem 
IX.2.16 of Ref. 14, Tt a converges strongly to Tt, uniformly on bounded inter- 
vals in t. The same holds for [1 - (TtA)*Tta]. 

As an example, we consider the ideal Bose gas. (16) Let A denote a bounded 
region of Na, let ~ = L2(A), and let Aa be one of the self-adjoint extensions 
of the Laplacian on C0~ Define the local Hamiltonian HA as - �89 H 
has pure point spectrum, with eigenvalues %a and eigenvectors ek a (k = 
1,2 .... ; % a >  e~- 1). Assumption (D) is satisfied with -~ = Co~(IR 3) = 
l,.)a Co~176 The algebra of observables for an ideal Bose gas confined in the 
box A is W(J~a), and the free dynamics is given by %xp(m~)- We couple this 
system to several thermal reservoirs, which are assumed to be infinitely 
extended ideal Bose gases, in quasi-free states determined by functions 

bj(e) = [ expf l j ( e -  ~ j ) -  1] -1 for Ee[0,  oo) (4.6) 

with flj > 0,/zj. < 0, j = 1 ..... r. Choose the coupling to satisfy (E). Then 
(4.1)-(4.3) hold and Theorem 4.1 can be applied to study the thermodynamic 
limit A S oo. 
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However, we remark that  continuous states on W(L2(R3)) are not ex- 
haustive of the states of interest. To see this, it suffices to consider the limit as 
A 7 m of the grand canonical state 

~ O~,o = [ e x p f l ( H A -  t~A,B,o)- 1] -1 

keeping the inverse temperature fl and the mean density p fixed, ~16~ This limit 

defines a state on [.JA W ( ~ ) .  However, only when p is less than the critical 
density for condensation p < pc = (2rr13)-s/2~=ln-8/2 can this state be 
extended to a continuous (quasi-free) state on W(L2(F~3)), of the form 

~o~B,~, Qe,p = [ e x p / 3 ( H -  tzB,p) - 1] -~, ~ , p  < 1 

On the other hand, when p >/ p~, the limit state is given by 

oJa~,o(W(h)) = exp[ - �88 II h It 2 _ �89 h)] 

where 

~B,o(h, h) = (p - pc)le~l(0)l~l~(0)l = + (h, [exp(/3H) - 1]- lh)  
(4.7) 

e~ 1 being the eigenvector corresponding to the lowest eigenvalue for HA in a 
region A ~ of unit volume; see Ref. 16 for the details. The maximal domain 
of the quadratic form (4.7) is LI(R 8) O L2(R3). I f  p < pc, QBA.p converges 
weakly to QB.p. Furthermore,  

lim coor = ~oQB ,~( OB,r,( W(h))) 

(combine weak converge of Q~,p to QB.o with strong convergence of Tt A to 
Tt). When p /> pc, we conjecture that 

lira wQ~.o(@BA.r,~(W(h))) 
A T o o  

= ~ . . . ( % , ~ , ( W ( h ) ) )  
1 / N .  = exp[-�88 2 - �89 -" pc)le~ (0)l~lT, h(0)l ~ 

- �89 [exp(fiH) - 1]-lTth) + �89 (1 - Tt*Tt)b(H)h)] 

at least when h is in 5P(R a) and all functions gj are C ~, so that also T,h is in 
5~(~3). However, we have been unable to give a proof  of this (surprisingly 
enough, the unbounded operator part  (h, [ e x p ( f i H ) -  1]-lh) gives more 
trouble than the singular part, proportional  to ]/~(0)]z). I f  the conjecture is 
true, then the density of  the condensed phase at time t is given by 
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Because of our technical assumption that the functions gj are in L ~, and since 
0 is a boundary point of the support ~j, ~j(0) actually vanishes, so that the 
zero-energy mode is decoupled from the reservoir and does not evolve. 

5. O N S A G E R  R E L A T I O N S  A N D  E N T R O P Y  P R O D U C T I O N  

In this section, we discuss for our model of an ideal Bose gas those non- 
equilibrium thermodynamic properties (Onsager relations, positivity of 
entropy production, principle of minimal entropy production in the linear 
regime) that were studied by Spohn and Lebowitz (1> for N-level systems. We 
shall only consider quasi-free states oJQ, where Q is a function of the Hamil- 
tonian, and dynamical semigroups q~B.r~ as specified in Eqs. (4.1)-(4.5). The 
time evolution of oJQ = oJqc~  ̂> or %<m is given by (we drop for the moment the 
subscript A) 

~oq( m o qbB.~, = oJq~m (5.1a) 
where 

qt(,) = {exp[-j~--~l ~aj(,)t]}q(,) + { 1 - e x p [ -  ~ ~s(,)t]}b(,) 

(5.1b) 

The evolution of ~%(m when the system is coupled only to the reservoirs of 
j t h  type is [TJ = exp(Kit)] 

%<m o OBj.~? = cor (5.2a) 

where 
q/(~) = {exp[-~j(~)t]}q(~) - {1 - exp[-~/E)tl}b(~) (5.2b) 

Let also 0t(e) = dqt(e)/dt, (t/(e) = dq/(E)/dt. Then 

0t=~ = ~ 0}=~ = ~ ~,(,)[b,(,) - q(,)] (5.3) 
.Y=I y= l  

We must require some conditions on the function q, which ensure that the 
quantities we compute are finite in finite volume, and that their densities tend 
to finite expressions in the thermodynamic limit. In finite volume, the mean 
energy, the mean particle number, and the entropy for a state ~o o are given, 
respectively, by 

~oQ(/TA) = tr QHA (5.4a) 

(HA is the second quantization of HA), 

oJQ(NA) = tr Q (5.4b) 

(NA is the number operator, i.e., the second quantization of 1,,cA), and (17'~a> 

S(o~Q) = tr[(1 + Q)log(1 + Q) - a log Q] (5.4c) 

In order to control the infinite-volume limit, we use a theorem of Ref. 17 for 
the trace of functions of the Laplacian. 
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Theorem 5.1 .<17~ Let f :  ~+ ---> ~ be a bounded, eventually decreasing, 
differentiable function, with f '  in L~oo(R+). Then trf(--AA) exists for some 
region A if and only if Sf(x 2) d3x exists. If this holds, then also 

t" d3x 2 
lim [A[-1 trf(--AA) = |Tg---caf(x ) (5.5) 

A f  oo d k.~Tr) 

where {A} is an increasing family of bounded regions containing the origin, 
of the form AL = {x ~ R3: L - i x  ~ A1}, L >/ 1, and !A[ is the volume of A. 
The Laplacian AA is defined with Dirichlet boundary conditions or with 
boundary conditions Oh/On + (a/L)h = 0, where a ~ ~ and O/On is the direc- 
tional derivative in the direction of the outward normal n to the boundary 
OAz. 

In order to apply the above theorem, and to ensure the finiteness of the 
expressions (5.4a)-(5.4c) at all times under the evolution given by (5.1) and 
(5.2), we need the following conditions on the function q. 

(F) q is positive, bounded, and bounded away from zero in any bounded 
subset of ~+ ; q is differentiable and q' is in L~oo(I~ +); the functions 
q(~), r and -bj(~) logq(~)(j = I ..... r), where bj is given by 
(4.6), are eventually decreasing; the following integrals exist: 
(i) fx2q(x 2) d3x, (ii) fq(x 2) d3x, (iii) - fq(x 2) log'q(x 2) d3x, 
(iv) - fb j (x  2) log q(x ~) dax (j = 1,..., r). 

Moreover, we have to assume that the functions gj ( j  = 1 ..... r) are differ- 
entiable, with bounded derivative, and eventually decreasing. Remark that 
all the functions bj satisfy (F). By Theorem 5.1, conditions (i)-(iv) imply their 
finite-volume counterparts: (i') ~kc~Aq(Ek t') < ~ ,  etc. ; this therefore ensures 
the finiteness of (5.4a)-(5.4c) in finite volume. The function b given by (3.17) 
satisfies (i)-(iv), as well as their finite-volume counterparts, and if q satisfies 
(i)-(iv), also qt and qjt satisfy (i)-(iv) and their finite-volume counterparts for 
all t /> 0. Indeed, 

q + b >l qt >1 e-Ytq 
where 

7 = max sup ~j(~) (5.6) 
J 

[0 < 7 < o% since the functions ~j(E) are positive and continuous, and vanish 
at 0 and oe]. From the first inequality, it follows that (i) and (ii) for q imply 
(i) and (ii) for qt, qjt. From the second inequality, we have 

- l o g  qt <<. 7t -- log q 

so that (ii) and (iii) for q imply (iii) for q*, qjt [and similarly for (iv)]. 
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Lemma 5.2. The heat and matter flows coming into the system in the 
state ~%(H~) from the reservoirs o f j t h  type are given, respectively, by 

d 
J y ( q ( H ~ ) )  = ~ o%'(H^)(/TA)lt=o 

= ~ %~g~(%~)[by(~ ~) - q(%~)] 
k = l  

and 

(5.7a) 

d 
J~N(q(HA)) = ~ ~176 

= ~ ~j(%~)[b~(% ~) - q(%~)] (5.7b) 
k = l  

Proof .  We prove (5.7a), the argument leading to (5.7b) being the same. 

we have 
@ .~,(%A)~,(%A) expE/3o(~k A - t~o)] 

L~"((ao}) = /_, ~:~ ,~ te ^a xkmx~ '~ k=l ~Z=lSZ~ ~ , {exp[/3o(~ a - /Zo)] - 1} ~ 
(5.11) 

which is manifestly symmetric under the interchanges i ~- j  and m ,~- n. 

(5.10) 

By Eq. (5.4a) and assumption (F(i)), wq/(nA)(HA) is finite at all times, and is 
given by the convergent series ~=1%Aq/(%A). Consider the series ~~ 
EkA0jt(% A) obtained by differentiation term by term. We have EI0/(e)I ~< 
7ee~[q(E) + bj(e)] for t ~< 1, where 7 is given by (5.6), so that the series under 
consideration is majorized by a convergent series which is independent of t. 
Hence, it converges uniformly in t and differentiation term by term of 
~ =  1%Aqjt(% A) is permissible. The result is (5.7a). 

Then, the entropy flowing per unit time into the system from the reservoirs 
o f j t h  type is given by 

J T ( q ( H A )  ) = f lsJjn(q(HA))  - fljILjJjN(q(HA)) (5.8) 

and the thermodynamic forces conjugated to H and N are 

f in  =/3,. -/3o, fin = _/3jILj + /30t~0 (5.9) 

where /30 and /~o are some intermediate inverse temperature and chemical 
potential. Let {~} = {~f, . . . ,  ~ ;  ~N ..... a~ N} = (/31 ..... /3~; -/3~/x~ .... , --/3rtz o 
and let {ao} be the 2r-tuple obtained by setting all/3; =/30 and/xj = t~o. Let 
also xk H = Ck A and x J  = 1 for all k. 

Theorem 5.3. The Onsager relations for the heat and matter flows in 
the stationary state ~%(HA) hold. Indeed, letting 

L~({a}) = 9--~J~m(b(HA)); m,  n = H,  N;  i , j  = 1 ..... r 
t,j y 
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ProoL Replacing b for q in expressions (5.7a) and (5.7b) for the j m, we 
get 

~,. m g i (  ,'c )gT( lc ) J,m(b(HA)) = ~k ~ - ~ z - - ~  [4('kA) -- bJ('~A)] (5.12) 
k=l 7=i 

which converges by Lemma 5.2. Treat/3j and fiflzj as independent variables. If 
we differentiate (5.12) term by term, and then put {~} = {~o}, we obtain (5.11), 
so that we only have to prove that the series of the derivatives is uniformly 
convergent in a neighborhood of {~o}. For/37 > 50/2 and -/~j > 0 we have 

( e Z / , - , p _  i)-1 ~< ( e B / -  1)-1 .~ (eeo "/2 _ 1)-1 

and for f17 > flo/2 and -/xj  > -tXo/2 we have 

e~/ ' - "?  1 ( 1 ) 
( e ~ / ' - " P -  1) ~ =  ea/ ' -gP - 1 1 + eB/,_,? - 1 

1 (  1 ) 
<~ eeo era-  1 1 + e_eoUol~_ 1 

Moreover, since all g are positive, 

0 <  y&(,) < ~,(,) < 7  

and the series 

yx~mx# ~ 1 + 
k=l exp(fl0%a/2) - 1 exp(-flotZo/4)- 1 

converges. This proves the theorem. 
As in Ref. 1, we define the entropy production ~r(q(HA)) as the source 

term in the entropy balance equation 

2 -d} S(qt(Ha))lt=~ = JjS(q(HA)) + a(q(HA)) (5.13) 
i=1  

where qt is given by (5.1b), j s  is given by (5.8), and the expression for 
S(qt(HA)), obtained upon inserting qt in (5.4c), is 

S(qt(HA)) = ~ {[1 + qt(%a)] Iog[1 + qt(,kA)] -- q'(ek A) 1ogqt(%A)} 
k = l  

(5.14) 
which is finite by assumptions (F(ii)) and (F(iii)). 

T h e o r e m  5.4. The entropy production (r(q(HA)) is given by 

k=lj=l 

x {log[1 + q(%A)] _ log q(%A) _ flj(%A _ /~7)} 
(5.15) 
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It is positive and convex as a function of q. The state ~oq.(nA~ of minimal 
entropy production is characterized by the condition 

j~=l [ b~(E) ----qm(E) "] = 0 
r ~j(E) log 1 +qm( e)qm(Q /3j(e - I~) + qm(e)[1 + qm(e)]J 

(5.1.6) 

for all E = ~k A. The stationary state o~b(n^~ does not satisfy (5.16) unless all 
temperatures and chemical potentials coincide. If/3 0 and tZo are some inter- 
mediate temperature and chemical potential, qm and b coincide in the linear 
approximation in fli - /30  and/3j/zj -/30t~0. 

Proof. In order to establish the validity of the expression (5.15), which is 
obtained by differentiating (5.14) term by term and subtracting the entropy 
flows (5.8), we must prove the uniform convergence of the series of the 
derivatives, which is 

- ~ (0'(,k A) log qt(e A) _ 0t ( ,~)  log[1 + q~(E~A)]} 
h : = l  

Now qt ~< q + b and 0 t ~< ~,(q + b) for t >/ 0. Also, - logqt (e )  ~< -~, - 
log q(E) for t ~ [0, 1]. Therefore, by (F(ii)-(iv)) the series converges uniformly. 
The convexity of the function 

q--+#(q) = ~ [ b - q ] l o g [ ( 1  +q) /q ]  (~ >/0; q ,b  > 0) 

is shown by computing its second derivative, which is 

~[q + b(1 + 2q)]/[qZ(1 + q)2] /> 0 

Thus, for 0 < ~ < 1, we have (compare Ref. 19) o(~q + (1 - cob ) ~< aa(q) 
since #(b) = 0. Hence 

0 <<. #(q) - a-~#(aq + (1 - a ) b )  

1 + q  l og l  + a q +  (1 - -~)b]  
= ~ [ b - q ]  log ~ ~ q ' - ~ ( 1 -  a)b J 

In the limit a -+ O, 

~[b-q][ log  1 +q-~ l og l  b b ] ~  >10 

Now flj(~ - /~j) = log{f1 + bj(E)]/bj(~)}. Thus, each summand of (5.15) is 
positive and convex as a function of q. In order to minimize (5.15), we can 
therefore minimize each summand independently, differentiating with respect 
to q. Direct computation leads to condition (5.16). This is not satisfied by the 
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function b, which gives the stationary state: insertion of (3.17) into the l.h.s. 
of (5.16) gives 

~j(e)[log 1 + b(E) 1 + bj(e)] log j 

which is not zero unless all inverse temperatures and chemical potentials are 
the same. However, b and qm can be regarded as functions of {~} = (31 .... , 
fl~; -fil/~z ..... --/?r/xr) and expanded about {%}. The zeroth-order term is 
{exp[fio( e - ~o)] - 1}-1 for both. A straightforward computation yields also 

] - 1 eBo(e - ~z O) 
qm(e)[~,=~o, = -- ~ ~a,(e) ~as(e)x~(e ) ( eB~176 _ 1) 2 

1=1 

b(e) (~=~o;  j 1 ..... r; n H, N ?aj  n 

(5.17) 
where xH(e) = e and xN(e) = 1 ; thus the principle of minimal entropy pro- 
duction holds in the linear approximation. 

In the limit of large volume, the heat and matter flows and the entropy 
production grow with IA[. So we divide by IA] and take the limit IA] --+ co, 
obtaining heat flow densities JjH(q(H)), matter flow densities J/V(q(H)), and 
entropy production density ~(q(H)). 

T h e o r e m  5.5. For the infinite, open Bose gas, we have 

f d3p [p2] [p2~ p2 
]j.H(q(H)) =j-~-~ ~ } ~ j ~ - ~ [ b j ( p 2 )  - q ( ~ ) ]  (5.18a) 

( dap pe pe 
JsN(q(H)) = j(2rr)a ~ , ( ~ - ) [ b j ( 7 ) -  q ( ~ ) ]  (5.18b) 

J(q(H)) = , = ~ (  dapJ (2zr)a ~aj ( ~ ) [ b j  ( - ~ ) -  ~ ~ - ~  ] , 7  ~p2'] 

• {log[1 + - logq(w - - . , ) ]  

(5.19) 
The heat and matter flow densities in the stationary state satisfy the Onsager 
relations. The entropy production density is positive and convex, and the 
principle of minimal entropy production in the stationary state holds in the 
linear approximation. 

Proof (sketch). All expressions IAI-Ug(q(HA))(j = 1,...,r; n = It, 
N) and IA[-l~(q(nA)) are of the form [A 1-1 t r f ( - A A ) ,  wherefsatisfies the 
hypotheses of Theorem 5.1, or is the difference of functions satisfying the 
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hypotheses of Theorem 5.1, by assumption (F). Then, recalling Eqs. (5.5), 
(5.7a), (5.7b), and (5.15), we find the expressions (5.18a), (5.18b), and (5.19). 
The Onsager relations for the heat and matter flow densities (5.18) follow 
from the same argument as in the finite-volume case. Positivity and convexity 
of (5.19) are obvious. Its minimization by a standard variational method leads 
to condition (5.16) for all E > 0. Then proceed as in Theorem 5.4. 

Remark. Suppose that the functions qt(E) and qjt(~) are eventually de- 
creasing for t in some neighborhood of zero (this would be trivially true if all 
the functions ~j were of compact support). Then we might obtain (5.18) by 
first taking the infinite-volume limit of[A[-lO%~(HA)(/TA) (same for NA) using 
Theorem 5.1, and then differentiating the resulting expression under the 
integral sign (the estimates needed for the justification of this are the same as 
in Lemma 5.2). Similarly, the limit as A 7 oe of [AI-1S(qt(HA))  would 
be(17) 

f d3P log[1 (p2)]- q t ( ~ 2 ) l o g q ~ ( ~ ) )  +q, 

(5.20) 

This is also the entropy density for the infinite-volume state, as defined and 
computed in Ref. 18. Again, (5.20) can be differentiated with respect to t 
under the integral sign, with the same estimates as in Theorem 5.4. When the 
entropy flow densities are subtracted, we obtain (5.19) again. 

6. F E R M I O N S  

Here we sketch how the foregoing discussion can be adapted to treat 
fermion systems, described by the CAR algebra, by using the results of Refs. 
20, 21, and 4. 

A representation of the canonical anticommutation relations (CAR) over 
a (complex) Hilbert space ~ is a conjugate-linear map h ~ a(h) o f ~  into the 
bounded operators on a Hilbert space ~ satisfying 

a(h)a(h') + a(h')a(h) = 0 (6.1a) 

a(h)a(h')* + a(h')*a(h) = (h, h')l (6.1b) 

for all h, h' in Jt ~ We use the notation a(h)# for a(h) or a(h)*, when no distinc- 
tion is needed. The CAR algebra over ~ ' ,  denoted by A(~) ,  is the (unique 
up to isomorphism) C*-algebra generated by a(h)#, h e ~ .  The map h ~ a(h) 
is automatically continuous, so we need not introduce "continuous states" as 
a particular class of states. If  B is a positive contraction on ~ ,  we denote by 
oJB the state on A ( ~ )  given by 

o~B(a(k,)* ... a(kl)*a(hl) ... a(hm)) = 8m,n det{(h~, Bkj)} (6.2) 
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Such states are the quasi-free gauge-invariant states. For any unitary operator 
U on W,, the map ~v on A(~/g) defined by 

~xtra(h)# = a(Uh) # (6.3) 

extends to a *-automorphism of A(Jf) .  Corresponding to each state oJB and 
each contraction T on ~ there is a completely positive, identity-preserving 
map ~B,T on A( H)  satisfying 

qbmr[a(hx)#-., a(h~)#] 

= ~ x(p)a(Th~l)# ... a(Th~,~)#o.,~(a(Dh~,~+ 1)# ... a(Dh~,)#) (6.4) 
P 

where D = ( 1 -  T ' T )  x/2, and where the summation is taken over all 
partitions p of {1 ..... n} into two sets {il,-.., ira} and {ira+x,"., in} with i~ < 
�9 . -< im and im+l < "'" < i,, and X(P) is the parity of the permutation 
{1 ..... n} ~ {il,..., i,}. When T is a projection, then (6.4) is a conditional ex- 
pectation. Due to the structure (6.2) of the states ~o~, a map satisfying (6.4) 
is determined by its action on monomials a(h)*a(h'). If  T~ = exp(Kt) is a con- 
traction semigroup commuting with B, then qbB,r, is a completely positive, 
strongly continuous semigroup satisfying 

fi cbB.r,[a(h)*a(h')] = a(Tth)*a(Tth') + ds (T~h', BGT, h) (6.5) 

where G = - K  - K*. More generally, if C is a positive bounded operator 
on ~ ,  with C ~< G, then there is a completely positive, strongly continuous 
semigroup ~t on A(~,~), satisfying (4~ 

Ji q~t[a(h)*a(h')] = a(Tth)*a(T,h') + ds (T~h', CT~h) (6.6) 

If  Bj, j = 1,..., r, are positive contractions, TJ = exp(Kjt) are contraction 
semigroups with bounded generators, [Bj, Kj] = 0 for all j, then q~ defined 
by (6.6), with Tt = exp(Y.~=xKjt), C = ~,~=xBjGj, satisfies 

d rbt[a(hO#.., a(h.)#]l *=~ 
dt 

~=1 ~~ qbB'rt'(a(hl )#''" a(h,)# [~= o (6.7) 

Dynamical semigroups of the form (6.6) have a stationary state wB~, where 

Boo = f o d s  T~*CT~ (B~ = B for ~B, r,) and all states approach Boo under the 

action of ~t as t ~ oo if and only if Tt converges strongly to zero as t -+ o~. 
The maps on the CAR algebra introduced here are the exact counterpart 

of the maps on the CCR algebra introduced in Section 2. It is straightforward 
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to adapt to them the proofs of Sections 3 and 4. Remark, however, that in the 
CAR case one can prove convergence in the norm of the CAR algebra, and 

that A(t..)A ~ )  = UA A(~V~A) �9 Also, the thermodynamic properties of the 
open Fermi gas coupled to several reservoirs can be discussed and proved 
exactly as in Section 5, with the replacement of (4.6) by 

bj(~) = {exp[/?j(~ - ~j)] + 1} -1, Bj > 0, /~j ~ ~ (6.8) 

and of (5.4c) by (22) 

S(coo) = tr[(Q - 1) log(1 - Q) - Q log Q] (6.9) 

Therefore, it would be pointless to repeat the arguments here. Instead, we 
take a simple model system (a one-dimensional lattice system with nearest 
neighbor interactions) and briefly study the situation that occurs when the 
simplifying assumption (E) on the coupling is dispensed with and different 
sites are coupled to reservoirs at different temperatures. Let A be a finite 
subset of N, A = {1,..., 2N}, [A] = 2N. Let 5fA = C IAI spanned by the 
vectors 

a,, n ~ A; 3,(m) = a,~ 

and let the one-particle Hamiltonian be 

HA = ~ {3, | g, - �89 | $,+~ - z3,+1 ~- | 3,] (6.10) 
n~2k 

with periodic boundary conditions. The eigenvalues of HA are 

k = 0  .. . . .  IAI/2  

and the corresponding normalized eigenvectors are 

c0 A [c0A(m) = ]A 1-1/2 for all m] 

c~ a, s~ a [c~A(m) = (2 / IAI )  1~2 cos(tg~Am) 

s~A(m) = (2/[A[) 1/2 sin(tg~Am) 

k = 1 ..... [ A I / 2 -  1] 

e)A,j2 [c)a,~2(m) = [A]-1,2(_ 1)m] 

(6.11) 

(6.12) 

In the thermodynamic limit, W = I..)A ~4,~A = l 2, and HA converges strongly 
to a bounded operator H on 12 given by 

(Hf)(n) = ~ - cos v~)f(m) 

This is essentially the fermion version of the X - Y  model. (2a'24) The reservoirs 
can be taken to be infinitely extended lattice systems of the same type or 
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other quasi-free Fermi systems if desired. Let each site be coupled to its own 
reservoir with a coupling 

VA ---- ~ f~ | $, (6.13) 
n~A 

where 

(fro, Ut~ = 3mngn(t) ~ Lz (R)  
Let also the reference state of each reservoir be determined by a function 
b.(H),  with 

b,(e) = (ee, ~ + 1) -1 (6.14) 

The resulting structure for KA is very complicated. It becomes simple when 
only the sites n = [AI/2 and n = ]A I are coupled to a reservoir. Indeed, for 
such sites 3, is orthogonal to all functions s~ A. Let us refer to the site ]A[/2 
(respectively [AI) as the " l e f t "  (respectively " r igh t" )  end of the chain (due 
to the periodic boundary conditions, the sites 1 and ]A] are nearest neighbors) 
and label by an index l (respectively r) the quantities referring to it. With the 
use of Lemma 3.1 we find 

1.4.1/2 ~r 

KA =-]Ar  -1 ~ j dt [exp(-i%at)][g,(t) + gr(t)] 
k = 0  0 

x (2 - ~,0 - 3~,fAtI2)c~A | C~' (6.15) 

Now KA commutes with HA, but it is not a function of it. It annihilates the 
linear span of {s~A}, so that the stationary state is not uniquely determined: 
for any operator BA of the form 

IA[12 
BA = BA s + ~ g~(~A)b'(~A) + ~r(%A)br(~'?-) k=o ~(ekA) + ~(%A) ck a ~ Ok A (6.16) 

where BA s is an arbitrary, positive contraction on lin{s~A}, the state cob a is a 
stationary state for the dynamical semigroup (I)t A, and (I)t A can be written as 
OB~,T.,-" In particular, we can choose BA as b(HA),  where 

b(~) = ~z(~)bz(e) + ~(e)b~(E) (6.17) 
~(~) + ~(~) 

Hence, the local structure of the coupling does not lead to a local structure of 
the stationary state. The heat flow coming into the system in the stationary 
state from the left reservoir is given by [compare (5.7a)] 

IA[/2 

Jt(Ba) = IAl -~ ~" (2 - 3z.o - 3k,,al/2)% A 
k = 0  

x ~z(%A) + ~(%A) [bz(% A) - b~(%A)] (6.18) 

and the heat flow from the right reservoir is 

J,.(B_.,,) = -J~(BA)  (6.18') 
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So we can regard .l,(B~t) as the steady heat  flow through the chain. Note  that  
the result is not  affected by the arbitrariness (6.16) in BA. The Onsager 
relations for the heat flows .Iz(BA) and Jr(BA)  are manifestly true. The entropy 
product ion  is given by 

IAI/2 

a ( q ( H A ) )  = ~ I <  -1 (2 - 8k.o - 8k.,Ar:2)~j(e~ A) 
j = l , r  k = O  

x [b~(% A) - q(%a)]{log[1 -- q(e~A)] -- log q(ek A) -- f i :k A} 
(6.19) 

Its properties follow from Ref. 1, since the system has a finite number  of  levels 
before the thermodynamic  limit. 

Theorem 6.1.  The stationary state c%(na), the steady heat flows (6.18) 
and (6.18'), and the entropy product ion (6.19) converge in the limit A :  o~ 
to 

COB ~ COb(H) 

Jz(B) = e(v~) ~,(e(t~)) + ~(e(v~)) [b'(e(v~)) - b~(e(vq))] (6.20) 

, L ( B )  = - J~(B) (6.20') 

f f  __d~ ~j(e(~))[b,(e(~)) ---> q(e(v~))] , ~ ( q ( H ) )  = ~r 

x, {log[1 - q(~(vq))] - log q(e(v~)) - fl:(v~)} (6.21) 

respectively, where 
E(v ~) = 1 - cos t~ (6.22) 

for  all cont inuous functions q with 0 < q(E) < 1 V~ e [0, 2]. On the other 
hand, 

lim r = 1 (6.23) 
A,,~ oo 

and 
lim co~r o r = co~(m ~ CB,T, (6.24) 
A 7  

for  all cont inuous functions q with 0 ~< q ~< 1. where 

f: T~ = exp(Kt),  K = - dt  [g,(t) + gr(0] e x p ( -  i H t )  p c  

pc denoting the projection onto  the functions in l 2 whose Fourier  t ransform 
in L2(0, 2~r) is even under  the interchange u ~ --~ 2~r - 8. The state %m(m of  
minimal entropy product ion is characterized by the condit ion 

.~=_~l, ~.j(e)[log 1 - qm(~) _ ft.: + b,(e) - i  q,~(e) ] -- 0 
qm(e) q,~(e)[1 - q.~(e)]J 

and coincides with the stationary state Wb(H) to first order  in the temperature 
difference fl{ 1 _ fi-  1 
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Proof. Since HA converges strongly to H, and all HA and H are bounded, 
also b(HA) converges strongly to b(H). Thus ~%(~A)(a(hO# ... a(h~)#) converges 
to w~(m(a(hl)#.., a(h,) #) for all h~,..., h,. The expressions (6.20) and (6.21) 
are the limits of (6.18) and (6.19), respectively, since 21A I - ~ w lAi/2 r i l  L ] r  0 J ~, l - -  COS L~/r A)  

is a Riemann sum for 

f ;  ~ f ( l  - cos ~) 

for all continuous functions f ,  and the two terms in (6.18) and (6.19) corre- 
sponding to k -- 0, IA]/2 do not contribute in the limit A/x  oo. We show 
that tIKAH tends to zero as A S oo. Let 

f M = sup dt e-~a[gz(t) + gr(t)] < oQ 

f0~ /'~a --- -21A1-1 dt [gz(t) + gT(t)J e x p ( - i H a t )  

and let PA c denote the projection of ~ onto lin{ckA}. Then 

IIKA[I < Ile#~;AP#Jl + IIKA- P#~;Ae#ll 

fo ~< H/?AII + [A]-lll Z dt [exp(-iekat)][gz(t)+ gr(t)] 
/~=0 ,  ,~'A if2 

x ( c~  A | e~  A) I[ 

~< 3MIAI -~ 

To prove the second part of the theorem, it suffices to show that 

~-lim f(H~)PA ~ = f ( H ) P  ~ (6.25) 
A A  oo 

for all continuous, bounded func t ions f  It is enough to consider the matrix 
elements of (6.25) between vectors 3m and ~, for all m, n. We have 

'? (~m,f(I4A)p#~.) = (~m, C~A)(C~ A, 8.)f(~ A) 
k = O  

= IA 1-1 (2 - 3k 0 - 3~,rAI/2) cos(uakAm) COS(~kAn)f(Ek A) 
k = 0  

�9 ~ - -  cos(em) cos(en)f(~(~)) 
A2r oD 77" 

= (~m, f (g )Pc~)  

(the two terms corresponding to k = 0, [A[/2 are unimportant in the limit). 
The properties of entropy production are shown as in Theorems 5.4 and 5.5. 
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Comments .  In  this model,  the heat flows and the entropy product ion 
remain finite in the thermodynamic  limit, since the coupling VA to the reser- 
voirs acts only at two sites. Since the temperature gradient 2[A I-1(/3il  - 
/3,-1) vanishes as A f 0% the system is a heat superconductor  in the sense of  
Ref. 25. The reason is that  there is no friction mechanism inside the chain, 
as in the harmonic  crystals considered in Ref. 25. On the other hand, the 
effect that  the coupling to the reservoirs has on the time evolution o f  local 
observables does vanish in the thermodynamic  limit [compare (6.23)]: 
indeed, the effect of  VA is averaged all over the chain by the free evolution, so 
that  KA is of  order  2[ A ] -  ~. In  order to see the effects o f  the coupling on local 
observables, one must  wait for  increasingly longer time intervals as the size 
of  the chain increases [compare (6.24)]. Finally, we remark that  the above 
discussion can be repeated with no essential modifications for any quasi-free 
Bose or Fermi lattice system with translationally invariant, finite-range 
interaction. 
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